Light Chain– dependent Regulation of Kinesin's Interaction with Microtubules

نویسندگان

  • Kristen J. Verhey
  • Donna L. Lizotte
  • Tatiana Abramson
  • Linda Barenboim
  • Bruce J. Schnapp
  • Tom A. Rapoport
چکیده

We have investigated the mechanism by which conventional kinesin is prevented from binding to microtubules (MTs) when not transporting cargo. Kinesin heavy chain (HC) was expressed in COS cells either alone or with kinesin light chain (LC). Immunofluorescence microscopy and MT cosedimentation experiments demonstrate that the binding of HC to MTs is inhibited by coexpression of LC. Association between the chains involves the LC NH2-terminal domain, including the heptad repeats, and requires a region of HC that includes the conserved region of the stalk domain and the NH2 terminus of the tail domain. Inhibition of MT binding requires in addition the COOH-terminal 64 amino acids of HC. Interaction between the tail and the motor domains of HC is supported by sedimentation experiments that indicate that kinesin is in a folded conformation. A pH shift from 7.2 to 6.8 releases inhibition of kinesin without changing its sedimentation behavior. Endogenous kinesin in COS cells also shows pH-sensitive inhibition of MT binding. Taken together, our results provide evidence that a function of LC is to keep kinesin in an inactive ground state by inducing an interaction between the tail and motor domains of HC; activation for cargo transport may be triggered by a small conformational change that releases the inhibition of the motor domain for MT binding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An atomic-level mechanism for activation of the kinesin molecular motors.

Kinesin cytoskeletal motors convert the energy of ATP hydrolysis into stepping movement along microtubules. A partial model of this process has been derived from crystal structures, which show that movement of the motor domain relative to its major microtubule binding element, the switch II helix, is coupled to docking of kinesin's neck linker element along the motor domain. This docking would ...

متن کامل

Aurora B helps the central spindle measure up

Aurora B helps the central spindle measure up D uring anaphase, cells assemble a central spindle between the segregating chromosomes. Micro-tubule plus ends overlap in the middle of the cell, creating a spindle midzone that recruits factors involved in positioning the cytokinetic actomyosin ring around the cell equator. Regulating the length and organization of central spindle microtubules is t...

متن کامل

Kinesin's biased stepping mechanism: amplification of neck linker zippering.

A physically motivated model of kinesin's motor function is developed within the framework of rectified Brownian motion. The model explains how the amplification of neck linker zippering arises naturally through well-known formulae for overdamped dynamics, thereby providing a means to understand how weakly-favorable zippering leads to strongly favorable plus-directed binding of a free kinesin h...

متن کامل

Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic [published errata appear in J Cell Biol 1995 Mar;128(5):following 988 and 1995 May;129(3):893]

The distribution and dynamics of both the ER and Golgi complex in animal cells are known to be dependent on microtubules; in many cell types the ER extends toward the plus ends of microtubules at the cell periphery and the Golgi clusters at the minus ends of microtubules near the centrosome. In this study we provide evidence that the microtubule motor, kinesin, is present on membranes cycling b...

متن کامل

The beginning of kinesin's force-generating cycle visualized at 9-Å resolution

We have used cryo-electron microscopy of kinesin-decorated microtubules to resolve the structure of the motor protein kinesin's crucial nucleotide response elements, switch I and the switch II helix, in kinesin's poorly understood nucleotide-free state. Both of the switch elements undergo conformational change relative to the microtubule-free state. The changes in switch I suggest a role for it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 143  شماره 

صفحات  -

تاریخ انتشار 1998